

Dose-Dependent Effects of Beta-Aminopropionitrile on Osteoblast Gene Expression and Collagen Production

Silvia P. Canelon¹ and Joseph M. Wallace^{1,2}

¹Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN ²Indiana University-Purdue University at Indianapolis, Department of Biomedical Engineering, Indianapolis, IN

Mean Area Ratio

 3.9068 ± 1.6353

INTRODUCTION

Type I Collagen

- Cells secrete three alpha helices which form a helical procollagen molecule
- Terminal telopeptide ends of molecules are cleaved by proteinases
- Inline self-assembly of molecules forms microfibrils
- Microfibrils arrange in a quarter-staggered array into fibrils with repeating gap and overap regions and are stabilized by crosslinks

- Periodicity of the gap and overlap region is referred to as the D-spacing and exists as a distribution of values
- Changes in the D-spacing distribution are reflective of disease, tissue type, and drug treatment

Collagen crosslinking

- Crosslinks stabilize collagen molecules within the fibrillar structure and the staggered array
- Enzymatic crosslink formation initiated in telopeptides by lysyl oxidase (LOX) enzyme reaction

Osteolathyrism

- Disease characterized by crosslink deficiency resulting in mechanical defects to bone and connective tissues
- Caused by high dietary consumption of osteolathyrogenic compounds such as beta-aminopropionitrile (BAPN)
- BAPN irreversibly binds to the active site of the LOX enzyme, preventing it from acting on telopeptide precursors

Study motivation

 Research dosage-dependent effects of BAPN on MC3T3-E1 osteoblast collagen-related gene expression, nanoscale collagen morphology, and collagen crosslinking

RESULTS

Quantitative reverse transcription polymerase chain reaction

Target Gene Fold Change		0.125mM	0.25mM	0.5mM	1.0mM	2.0mM
Lysyl Oxidase	LOX	0.783	0.580*	0.540*	0.727	0.912
Bone Morph. Protein-1	BMP-1	1.044	0.675*	0.071	0.666*	0.945
Type I Collagen α ₁	COL1A1	1.236	0.918	0.872	0.941	1.001
Type I Collagen α ₂	COL1A2	1.215	0.878	0.930	1.123	1.396
*Indicates statistically significant changes (p<0.05)						

 Significant downregulation of LOX and BMP-1 at 0.25mM, 0.5mM, and 1.0mM

Fourier Transform Infrared Spectroscopy

Mean Peak Percent Area

16.2868 ± 4.1089

 No difference in genes coding for Type I collagen

••• Control

BAPN-treated

50- Mean = 66.4nm ± 0.4 nm

D-spacing distribution range • Control: 60.2 nm - 72.9 nm • BAPN: 61.7 nm - 71.1 nm

Anderson-Darling test revealed p<0.0001

Mean = 67.1nm ± 0.4nm

∫

A-D Test

p < 0.0001

(n=4, 251 fibrils)

4.7963 ± 2.2037 8.2149 ± 3.4959 ~1660 cm 1.9865 ± 0.6145 4.4880 ± 2.3100 ~1690 cm⁻ 0.0048 ~1660 cm⁻¹ 0.0338 p-value ~1690 cm⁻¹ 0.8177 ---- Control BAPN-treated 0.2 1900 1800 1700 1600 1500 1400 1300 1200 1100 Wavelength (cm⁻¹)

Significant decrease in collagen crosslink ratio driven by a reduction in the mature crosslink peak percent area

MATERIALS AND METHODS

Cell culture and collagen synthesis

- Murine preosteoblasts (MC3T3-E1) cultured in proliferation medium and differentiated with 50 μg/mL ascorbic acid
- 500,000 cells were seeded into 60 mm dishes (density: 177 cells/mm²)
- Experimental cultures were supplemented with 0.125, 0.25, 0.5, 1.0, or 2.0mM BAPN for qRT-PCR and 0.14mM for AFM and FTIR

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

- Cells seeded into 10 dishes, 5 dishes per group (control or BAPN, n=5 each), and differentiated for 1 week
- SYBR Green primers and master mix used in determining mRNA expression
- Sample/gene combinations run in triplicate with β-actin as reference gene
- Expression fold change found using an efficiency-calibrated mathematical model of the REST® program

Atomic Force Microscopy (AFM)

microscopy

each location

- Cells seeded into 8 dishes, 4
 5 locations per dish were dishes per group (control or 0.14mM BAPN, n=4 each), and differentiated for 2 weeks
- Media was removed and cells were treated with 10 mM EDTA to promote detachment from the extracellular matrix
- Matrix was rinsed with water and air-dried

imaged in air by atomic force

• 3.5 μm x 3.5 μm images from

2D Fast Fourier Transform

D-spacing analysis

(2D-FFT) performed on 10

collagen fibrils per location for

Minimum of 50 fibrils per dish

and 200 fibrils per group

Left: AFM error image of collagen with one fibril outlined for 2D-FFT. Right: 2D-FFT corresponding to the outlined fibril.

Fourier Transform Infrared Spectroscopy (FTIR)

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

Periodic D-Spacing (nm)

- Cells seeded into 6-well plates, 6 wells per group (control or 0.14mM BAPN, n=6 each), and differentiated for 2 weeks
- Media was removed and cells were rinsed with PBS and water then transferred to BaF, window
- Peaks under amide I region found with 2nd derivative spectroscopy
- Underlying peaks at
- ~1660cm⁻¹ (mature crosslinks) and
- ~1690cm⁻¹ (immature crosslinks) fit

DISCUSSION

- Significant effects of BAPN treatment on gene expression, as well as the morphology and enzymatic crosslinking in Type I collagen produced in vitro
- Fewer crosslinks are initialized and formed due to BAPN binding to LOX active site
- qRT-PCR confirmed a dose-dependent response of LOX and BMP-1 to BAPN treatment
- 0.25mM BAPN dosage
 - Irreversible binding of LOX by BAPN drives decrease in LOX expression, potentially driven by decreased BMP-1

- Lack of a coupled effect with higher dosages suggests BAPN binding alone may downregulate LOX and BMP-1, or that other contributing factors exist
- Low 0.14mM BAPN dosage
 - Decreased ratio of mature to immature crosslinks, driven by reduction in mature crosslink HP (hydroxylysylpyridinoline)
- Low 0.14mM BAPN caused an increase in the D-spacing distribution of collagen
- Crosslinks may compress fibrils driving lower D-spacing in normal collagen
- Fewer crosslinks in the BAPN group could account for the increase in D-spacing

CONCLUSION

BAPN is able to produce post-translational nanoscale structural changes to the collagen matrix in absence of a response in expression of genes relating to collagen synthesis or enzymatic crosslinking

